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Abstract. Stream programming is a promising way to expose concur-
rency to the compiler. A stream program is built from kernels that com-
municate only via point-to-point streams. The stream compiler statically
allocates these kernels to processors, applying blocking, fission and fusion
transformations. The compiler determines the sizes of the communication
buffers, which affects performance since local memories can be small.
In this paper, we propose a feedback-directed algorithm that determines
the size of each communication buffer, based on i) the stream program
that has been mapped onto processors, ii) feedback from an earlier execu-
tion, and iii) the memory constraints. The algorithm exposes a trade-off
between throughput and latency. It is general, in that it applies to stream
programs with unstructured stream graphs, and it supports variable ex-
ecution times and communication rates.
We show results for the StreamIt benchmarks and random graphs. For
the StreamIt benchmarks, throughput is optimal after the first iteration.
For random graphs with stochastic computation times, throughput is
within 3% of optimal after four iterations. Compared with the previ-
ous general algorithm, by Basten and Hoogerbrugge, our algorithm has
significantly better performance and latency.

1 Introduction

Many applications, including video, audio, 3D graphics, and radio, contain abun-
dant task and data parallelism, but it is hard to extract from C source code.
Stream programming represents the application as concurrent kernels, interact-
ing only via point-to-point streams of data. This representation exposes concur-
rency to the compiler, is natural for signal processing, and easier to debug since
it is deterministic. As the industry moves towards multiprocessors [1], there is
increasing interest in portable, efficient, correct use of parallelism.

Much work on stream compilation has focused on blocking and allocation.
Blocking unrolls kernels to amortise fixed costs. Allocation fuses one or more
kernels, from the source program, into each task, in the executable, and maps
these tasks onto processors, balancing loads on processors and buses.

This paper considers a problem that has received less attention: allocating
memory for stream buffers, subject to memory constraints, when computation
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times and communication rates are variable. This is an important problem, be-
cause it affects performance, as we explain in Section 2. The buffer sizes are
constrained by the available memory, which may be small. On the Cell Broad-
band Engine [2], for example, code and data must fit in the 256KB local store.

The inputs to the algorithm are the mapped stream program, a program trace
and the machine description, giving the target topology and memory budgets.
A simple model of computation times and communication rates, such as inde-
pendent normal distributions and Poisson arrivals, may be misleading, so the
only options are simulation and real execution. We use coarse-grain simulation,
but real execution could be used instead. The output is the buffer size for the
producer and consumer on each stream, which may be different.

The main contributions of this paper are:

– In Section 3, we describe a feedback-driven method to allocate stream buffers
in a distributed memory machine, when computation times and communi-
cation rates are variable.

– In Section 5.1, we describe two algorithms that analyse profiling information
to find bottleneck cycles caused by undersized communication buffers. The
first uses waiting times only; the second is more complex but more accurate.

– In Section 5.2, we describe an algorithm to allocate stream buffers using the
above algorithms, which converges quickly to a close-to-optimal allocation.

2 Motivation

Double buffering is a well-known technique to overlap communication and com-
putation. There are two situations, however, when a stream ought to be allo-
cated more than two buffers. The first is when a stream covers a long latency or,
equivalently, crosses more than one pipeline stage boundary. The second is when
there are short-duration load imbalances due to variable computation times or
communication rates.

The chain8 benchmark illustrates the first situation, and is shown on the left
of Figure 1. It has eight tasks in a pipeline, with streams between consecutive
tasks, and another stream between the first and last tasks. Figure 1(a) shows
the progress of the first and last tasks relative to the stream between them. The
vertical axis is time, and the horizontal axis is the position in the stream. At
any given time the producer is working on some interval of the stream, which it
owns. It starts at the top left of the plot, at the beginning of both the stream and
time, moving to the right when it sends data to the consumer, and continually
downward through time. The figure also shows the progress of the consumer.

The periodic pattern of waiting is caused by the interaction between two
dependencies. First, the consumer must wait for its data to arrive, which means
that it waits for the producer, plus the latency of the pipeline. This gives a
vertical dependency from producer to consumer. Second, the producer must
wait for an empty consumer-side buffer in which to send its data, and this gives
a horizontal dependency from consumer to producer.
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Fig. 1. Effect of consumer queue length on chain8 and producer-consumer

Figure 1(b) is for six consumer-side buffers, which increases throughput by
73%, and is sufficient for the producer to be always busy. This shows that double
buffering was not sufficient, but also that the number of buffers can be less than
one plus the difference in pipeline stage, which is the number of buffers allocated
by StreamRoller [3] and SPIR [4]; in this case eight.

The second situation is illustrated using the producer-consumer example on
the right of Figure 1. If the producer and consumer both have fixed computation
times and communication rates, then double buffering is sufficient. Sometimes,
single buffering at one or other end will be enough, even with good load bal-
ancing. Subfigure (c) shows the progress of this example, using double buffering,
when computation times are normally distributed. Increasing the number of con-
sumer buffers to five, as shown in subfigure (d), increases throughput by 20%.

The performance of the queue length assignment algorithm is quantified using
the utilisation, which is the percentage of time that the most heavily loaded
processor or bus is busy. Utilisation is proportional to throughput. If the stream
graph is acyclic, at least one resource ought to be 100% busy. If any resource
has utilisation less than 100%, it must be due to insufficient buffering.

The tradeoff between utilisation and the number of consumer buffers is il-
lustrated in Figure 2. Chain has linearly increasing utilisation until it reaches
100%. Producer-consumer achieves 99% utilisation with 3 producer and 4 con-
sumer buffers, and additional buffering yields diminishing returns.

3 The ACOTES Stream Compiler

This work is part of the ACOTES European project [5], which is developing an
open source stream compiler for embedded systems. The compiler will map a
portable stream program, written in the SPM [6], an annotated version of C,
onto a heterogeneous multicore system, applying blocking and task fusion.

The compiler statically allocates tasks onto processors. Although a dynamic
policy can achieve better load balance [7], it has greater overhead. On a dis-
tributed memory processor, instructions and state cannot be transferred on de-
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mand through caches, so a context switch requires all data to be transferred at
once. A context switch on the Cell SPE requires about 30µs [8]. The techniques
in this paper can be used to absorb small scale variation in complexity.

Figure 3 shows how the queue length assignment algorithm fits into this
stream compiler. The blocking and partitioning stages transform the program as
described in the introduction. The queue length assignment stage, which is the
focus of this paper, then determines the optimal buffer allocation.
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Our SPM language eliminates deadlock, so the objective function depends
only on performance and latency. The interaction between bounded memory
in process networks and deadlock, but not performance, has been explored in
depth [9–11], and these techniques can determine the minimum buffer sizes.

The queue length assignment algorithm is iterative, and consists of a coarse-
grain simulator, a cycle detection algorithm, a buffer size update algorithm, and
an evaluation algorithm. The cycle detection algorithm analyses metrics from
the simulator, and finds a bottleneck cycle. The buffer update algorithm chooses
the initial buffer allocation, and adjusts buffer sizes to resolve the bottleneck.
The evaluation algorithm monitors progress and decides when to stop, choosing
the buffer allocation that achieved the best performance-latency tradeoff.

4 Formalisation of the Problem

Queue length assignment seeks to find an optimal tradeoff, subject to memory
constraints, between throughput and latency We wish to find a close to Pareto
optimal solution: that is, neither latency nor throughput can be improved with-
out making the other one worse. We keep memory use within the constraints,
but do not try to minimise it.

The stream program is represented as a connected, not necessarily acyclic,
digraph, P = (T, S), where T is the set of vertices (tasks), and S is the set of
edges (streams). Each stream s has a producer and consumer buffer size in bytes,
bp(s) and bc(s), and a minimum number of buffers, sufficient to hold the working
set and avoid deadlocks. If P is acyclic, as for ACOTES, deadlock is impossible;
otherwise minimum sizes can be found using the references in Section 3. The
algorithm determines the actual number of buffers, np(s) and nc(s).
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Each task has a trace, which is an alternating sequence of computation times
and primitives. There are four communications primitives and a fire primitive,
which marks the firing of a task; i.e. the calling of its work function inside an
implicit loop. The communications primitives use a push model similar to the
DBI variant of TTL [12]. They are described below, assuming, for simplicity, that
the producer and consumer have the same buffer size, which is not required. A
block is the contents of one buffer, and i and j count blocks, starting at zero.
The first argument is the stream.

ProducerAcquire(s, k) Wait for the producer buffer for block i + k to be avail-
able, meaning that the DMA transfer of block i + k − np(s) has completed

ProducerSend(s) Wait for the consumer buffer for block i to be available, mean-
ing that the producer has received acknowledgement that block i−nc(s) has
been discarded. Then send the block and increment i

ConsumerAcquire(s, k) Wait for block j + k to arrive in the consumer buffer

ConsumerDiscard(s) Discard block j, send acknowledgement, and increment j

The traces are interpreted using the ASM coarse-grain simulator, which takes
a machine description that defines the target [13]. Queue length assignment needs
only the memory constraints, which are represented using a bipartite graph,
H = (R, E). The set of vertices, R = P ∪M , is a disjoint union of processors P
and memories M , and the edges, E, connect processors to their local memories.
Each memory has weight equal to the amount of memory available, in bytes,
for stream buffers. Figure 4 shows the memory constraint graph for the Cell
Broadband Engine; the memory weights depend on how much memory is already
being used. We will later assume that each processor is connected to a single
memory, but it may be shared with other processors.

SPE1 SPE2 SPE8

LS1 LS2 LS8

Processors, P :

Memories, M :

Fig. 4. Memory constraint graph for the Cell Broadband Engine

The evaluation algorithm and Section 6 of the paper require an estimate of
latency. Since it is orthogonal to the rest of the paper, and only differences in
latency matter, we use a scheme which ignores delays inside tasks.

Define ft(n) to be the time of firing, n = 0, 1, · · · , Mt−1 of task t, taken from
the fire primitive. Since each task contributes to a common amount of real-world
progress, normalise n to the interval 0 ≤ x < 1 by dividing it by Mt. Then
gt(x) = ft(⌊Mtx⌋) gives the time that task t was proportion x ∈ [0, 1) through
the calculation. The latency, L(x), is the difference between the largest gt(x) for
a sink and the smallest gt(x) for a source, which can, unfortunately, be negative
when multiplicities are variable. We report the average value of L(x).
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5 Description of the Algorithms

In this section, we describe several algorithms for cycle detection and buffer
size update. First we review the standard critical cycle detection algorithm,
and explain when it is applicable. We introduce our baseline algorithm, which
finds the bottleneck cycle by analysing the time each task is blocked on each
stream. This data is easy to obtain, and the algorithm is quite effective. We
then give an example that the baseline algorithm gets wrong, and propose the
token algorithm, which requires extra bookkeeping but achieves better results.
Finally, we describe several variants on the buffer update algorithm, which have
different tradeoffs between speed of convergence and latency.

ProducerAcquire

ProducerSend

ConsumerAcquire

ConsumerDiscard

(448, 0) (0, 1) (480, 0) (0, 1)(13, 1)
(13, 0)

(13, 1)

Style Waiting primitive (§4)
Bold ProducerAcquire
Dashed ConsumerAcquire
Solid ProducerSend
Dotted Computation

(a) Timed event graph (b) Types of edge

Fig. 5. Example timed event graph used by the critical cycle algorithm

5.1 Cycle Detection Algorithms

Critical cycle algorithm The critical cycle algorithm [14–16] solves the cycle
detection problem for homogeneous Synchronous Data Flow (SDF) [17] with con-
stant computation times and communications latencies. In homogeneous SDF,
every time a producer or consumer fires, it pushes or pops a single buffer on each
stream. All tasks therefore fire at the same rate. The algorithm can be extended
to SDF, where each producer or consumer pushes or pops any fixed number of
buffers, but it requires expanding the graph, which can make it much bigger [18].

Figure 5(a) shows how producer-consumer, assuming a single buffer at each
end, is represented by this algorithm. Each vertex is the return from a commu-
nications primitive. The edges are distinguished, for the diagram but not the
algorithm, using the convention in subfigure (b), which refers to the primitives
in Section 4. Each edge has weight, which is its fixed computation time or com-
munications latency, and height, which is the fixed difference between the firing
number, which counts the number of times a task has fired, at its two ends.

For example, at the producer side, the dotted line from ProducerAcquire to
ProducerSend, of weight 448 and height 0, represents computation inside a single
iteration. The solid line in the reverse direction, of weight 13 and height 1, is
because the producer cannot reuse its single buffer in the current firing until the
previous DMA has completed.

Throughput is constrained by the critical cycle, which is a cycle with maxi-
mum ratio of total weight divided by total height. There are several algorithms
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to find such a cycle, many based on Karp’s Theorem [19], in time O(|S|2|T |) or
so [15], using the terminology of Section 4.
Baseline Algorithm Our baseline algorithm is more general, because it sup-
ports variable data rates, computation times, and communication latencies. It
finds the bottleneck by analysing wait times in a real execution or simulation.

Figure 6 shows how the stream program and wait times are represented by
the algorithm. Subfigure (a) is an example stream graph with three tasks in a
triangle. Subfigure (b) is the wait-for graph, which has the same three edges per
stream as the timed event graph. Following convention for wait-for graphs, the
arrows point in the opposite direction, from the waiting task. The weight of an
edge is the proportion of the total time that the task at the initial vertex, or
tail, spent waiting in its communications primitive.
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Fig. 6. Example weighted wait-for graphs

As for the critical cycle algorithm, performance is constrained by dependence
cycles in the wait-for graph. We will use two bounds, one local and one global,
on the maximum increase in performance from relaxing a cycle; i.e. increasing
buffering on one of the streams in the cycle that gets full.

Consider the potential benefit from relaxing cycle C1 = (t0 t2 t1). This can
only be done by increasing buffering on the stream from t0 to t2. Since t1 waits for
27% of the time, during the ConsumerAcquire primitive in this cycle, we could
reduce the execution time of t1 by at most 27%, before the cycle disappears.
Since all tasks execute for nearly the same amount of wallclock time, any change
in throughput will cause all vertices to have their total waiting time, not just on
the edges of this cycle, reduced by the same amount. It is therefore likely that
the edge in the cycle that disappears first is its weakest edge.

The local bound is the weight of cycle C, denoted w(C), which is the mini-
mum weight of its edges. If there is no cycle with non-zero weight, then utilisation
is already 100%. This is because every directed acyclic graph has a vertex with
no outgoing edge, which corresponds to a task that never has to wait.

Figure 6(c) is the motivation for the global bound. The maximum weight cy-
cle is the loop on t0, of weight 0.13, which we will call C2. A moment’s reflection,
however, shows that C2 cannot really be a bottleneck since neither t1 nor t2 ever
wait for t0, even indirectly. If we reduced the time t0 spent waiting on this loop,
it cannot make t1 or t2 go any faster. Since throughput would be unchanged, t0
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must spend the same total amount of time waiting, so the waiting time would
move from ProducerAcquire to ProducerSend (see Figure 5(b)).

The global bound is the strength of the cycle, denoted s(C), which is the
lowest value of the maximum flow through a single path to the cycle, starting
from any other vertex. Since there is no path at all from t1 to C2 in Figure 6,
the cycle has zero strength: s(C2) = 0. In contrast, the cycle (t1 t2) has strength
0.77, because this is the weight of the only path from the only other vertex, t0.
Increasing the performance of t1 and t2 by any means could reduce execution
time of the program as a whole by 77%. This cycle is the bottleneck, and it has
weight 0.05. The requirement that flow be through a single path makes little
difference in practice, but it reduces considerably the algorithmic complexity.

It is possible for the wait-for graph to be disconnected; e.g. when tasks wait
for each other only through bus contention. This happens rarely, but it causes all
strengths to be zero. Therefore, when all strengths are zero but the utilisation
is below some threshold (currently 100%), the strengths are ignored. Since it
almost never happens, there is little reason to be more sophisticated.

We first calculate the strength of each vertex by computing the all-pairs bot-
tleneck paths [20]. This finds, for every pair of vertices, the value of the maximum
flow through a single path from the first vertex to the second. It is solved using
a variant of Dijkstra’s algorithm, running Dijkstra for each vertex to find the
maximum flow paths into it. The strength of that vertex is given by the path
with the lowest flow. The total execution time is O(|S||T |+ |T |2log|T |), using a
Fibonacci heap [21, 22], with the terminology of Section 4.

The algorithm finds a cycle with the maximum value of the minimum of the
local and global bounds. It is straightforward to show that we can take account
of both simply by replacing the weight of every edge e = (a, b) by a new weight,
w′(e) = min (w(e), s(a)). A maximum weight cycle, according to w′, can be
found in time O(|S| log |S|), where S is the set of streams. To find out whether
there is a cycle of weight ≥ W , for some W , just check whether there is any
cycle if you ignore all edges of weight < W . This can be done in time O(|S|) by
attempting to perform a topological sort. To find a maximum weight cycle, first
sort the edge weights, and perturb them so that no two are exactly the same.
Then use bisection on the sorted edge weights.

The baseline algorithm uses data that is easy to obtain, and is usually quite
effective, but it has one limitation. Since each task is represented by a single
vertex, it cannot “see” what is happening inside them.

Figure 7(a) shows an example where the baseline algorithm makes a bad
decision. The maximum weight cycle is (t1 t0 t2), which has weight 0.50. Whether
or not this is a bottleneck depends on the internal behaviour of tasks t1 and t2.
The order of operations per firing of task t1 is shown in subfigure (b). If we also
know that task t1 always waits in step 5, then reducing the waiting time in step
1 will simply result in a longer waiting time in step 5. It can never advance the
push in step 6, so the critical cycle cannot be (t1 t0 t2).

Token Algorithm The token algorithm addresses this problem by tracking de-
pendencies through tasks. This is somewhat similar to causal chains [23], except
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Fig. 7. Example where baseline fails

that the aim is to resolve performance bottlenecks rather than artificial dead-
locks. Their algorithm fixes a deadlock after it happens, when all tasks have got
stuck, but we cannot expect all tasks in a cycle to ever be waiting simultaneously.

During the simulation, or at runtime in a dynamic scheme, each task t has a
current token, St, which is the stream that most recently made t wait, directly or
indirectly, because it got full. It has a current waiting time, Wt, which measures
how much the task has already had to wait, so that only increases in waiting
times are charged to streams. It also has a waiting vector, (Vt)s, which gives the
total waiting time for each stream in the whole program. Each consumer buffer
c has a current token, Sc, and current waiting time, Wc, which together record
the producer’s problem at the time the block in that buffer was sent.

When task p blocks for time τ because output stream s is full, it sets Sp ← s
and increases both Wp and Vp[s] by τ . When task p sends a block using buffer c
on output stream s, it records a copy of its current state: Sc ← Sp and Wc ←Wp.
When a task q blocks for time τ because input stream s is empty, it also, after
the data arrives, reads Sc and Wc, from the consumer buffer c containing the end
of the data. It then updates its current token Sq ← Sc to indicate that it had to
wait, indirectly, for whichever stream the producer had to wait for, and calculates
the increase in current waiting time ∆Wq ← min(τ, Wc −Wq), which can be
either positive or negative. If it is positive, then Vq[Sq] is increased by ∆Wq. In
either case, the current waiting time is then updated using Wq ←Wq + ∆Wq.

The waiting vectors are used to construct an indirect wait-for graph, as shown
in Figure 7(c). If Vt[s] > 0, there is an edge from task t to stream s with weight
Vt[s]/L, where L is the total execution time of the run, in the same units. Each
stream s also produces an edge from s to its consumer q. The weight of this edge
is s(q), the strength of q, as defined for the baseline algorithm.

This is effectively viewing each stream as an actor in its own right, which is
always blocked waiting for the consumer to discard its data. This is the most
convenient place to take account of the strengths, which are still relevant by the
same argument as before. The token algorithm finds the maximum weight cycle
in the same way as the baseline algorithm.

Figure 8 shows a second example which clarifies the need for the cycle-based
algorithm outlined above. In the stream program of Figure 8(a), task t0 pushes
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the outputs in the cyclic order (s01 s03 s04 s06), waiting only in ProducerSend for
streams s03 and s06 due to their longer latency.
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t1 t2 t3

t4 t5 t6

s01
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s04

s06

t0

t1 t2 t3

t4 t5 t6
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s06

0.25

0.49 0.49 0.48

0.25

0.50 0.50 0.50

(a) Stream graph for bichain4 (b) Indirect wait-for graph

Fig. 8. Token algorithm: bichain4 example

When it pushes on stream s04 of the right branch, the most recent wait was
due to stream s03 being full, so it sends the token for s03. Similarly, it sends the
token for stream s06 to stream s01 of the left branch. The indirect wait-for graph
is shown in Figure 8(b), with cycle (t3 s06 t6 s03) going through both streams.

5.2 Buffer Size Update Algorithms

The cycle detection algorithm returns a set of edges in the wait-for graph that
cause a bottleneck cycle by becoming full. Relaxing the cycle involves increasing
memory on one or more of these edges. The purpose of the buffer size update
algorithm is to determine which edges to enlarge, and by how many buffers.

Our simplest algorithm is miserly, meaning that it starts at the minimum
number of buffers, mentioned in Section 4, and each iteration increases the allo-
cation of a single buffer by one. The other algorithms speculatively assign spare
memory, and only take it away if it is needed elsewhere. For all these algorithms,
each stream s demands some number ds of buffers, as for the miserly algorithm,
and requests another rs to be granted out of unused memory, if there is any.
When there is not enough memory to grant all requests within some memory,
we used the following algorithm. The total request in bytes is R =

∑
rsbc(s),

where bc(s) is the size in bytes of a single consumer buffer for stream s. If M
bytes are left after granting all demands, so R > M , then each stream is initially
granted ⌊rjM/R⌋ extra buffers, then possibly one more, if it fits.

In our first alternative, double, each edge requests an extra buffer if it is
currently allocated only one. In our second alternative, exponential, the request
is for some multiple, f − 1, of the number of buffers demanded. We still use a
greedy update algorithm, so that when the number of buffers is increased, the
edge demands, on the next iteration, one more buffer than it was given in total
last time. We used f = 2, so an edge will demand 2k − 1 buffers, and request an
equal number, for k = 1, 2, · · · , until it is given fewer buffers than it wants.

The third alternative, level, uses the top level, the length of the longest path
from a source node, and bottom level, the length of the longest path to a sink
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node. The algorithm the same as exponential, except that the request is the max-
imum of a) f − 1 times the number of buffers demanded, b) twice the difference
in top level, and c) twice the difference in bottom level. This tries to give a high
initial allocation to streams that cross a high latency.

6 Evaluation

We used the StreamIt 2.1.1 benchmarks [24], random graphs, and sixteen exam-
ples, including chain8, producer-consumer, bad-baseline, and bichain4. For the
StreamIt benchmarks, we used the program graph, work estimates and commu-
nications rates generated by the StreamIt compiler, and used our algorithm [25]
to produce partitions for an IBM QS20 blade, which has two Cell BEs.

Buffer size update The first three rows of Figure 9 compare the buffer
update algorithms from Section 5.2. These plots also contain results for Basten
and Hoogerbrugge (B&H) [23] and modified StreamRoller [3], which will be
discussed in Section 7. The left column shows as a function of the iteration
number, the utilisation, which is proportional to throughput, as remarked at
the end of Section 2. The right column shows the tradeoff between latency and
utilisation. Any points that cannot be Pareto optimal, because they are beaten
on both utilisation and latency by some point to the top-left, have been removed.

The first row is for random stochastic graphs with 32 tasks and 50 streams.
The graphs are connected and acyclic, but otherwise unstructured. The com-
putation time of each task is normally distributed with a random mean and
variance (clamped above zero). Notice that B&H has poor performance and,
since it increases buffering where it isn’t necessary, high latency.

We found the upper bound on utilisation using an exhaustive search over all
allocations of the buffers on the processor, p, whose memory bound caused the
level algorithm to terminate. All other queues on other processors were set to
their maximum possible size, assuming that all other queues in the same memory
had their minimum size. Since this tends to allow a task near the beginning of
the stream graph to work flat out filling downstream buffers, the steady state
utilisation would be known only after many firings. Instead, we took the utilisa-
tion of the task on p, and scaled by the ratio of the long-term processing times
of the most heavily loaded processor and of p.

The second row shows the StreamIt 2.1.1 benchmarks, with an unroll factor
of 100. The third row shows the stochastic StreamIt benchmarks, which have
normally-distributed computation times, and are intended to show how the al-
gorithms fare for realistic program graphs.

The left column shows that the level algorithm always provides the fastest
convergence. The modified StreamRoller algorithm is similar to the first iteration
of the level algorithm, and B&H is considerably worse. The level heuristic initial
allocation is within 15% of the upper bound on optimal performance, and is
increased to within 3% of optimal after four iterations.

Cycle detection We evaluate the cycle detection algorithms only, using
greedy buffer update without memory constraints. When task execution times
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and communications rates are constant, and bus contention is negligible, the
critical cycle algorithm of Section 5.1 is optimal. The last row of Figure 9 shows
the utilisation and latency for an average of six random graphs with stochastic
computation times. The poor performance of the critical cycle algorithm (about
60% utilisation), is because it is unable to detect cycles that arise from execution
time variability. The baseline and token algorithms achieve similar performance,
although the token algorithm achieves slightly lower latency.

We also evaluated the cycle detection algorithms when there is high bus
utilisation, but for space reasons did not include the graph. The critical cycle
algorithm cannot model increased communication latency due to contention [26,
§E.5]. For a benchmark with a single producer task connected to two consumers,
and bus usage close to 100%, the critical cycle algorithm achieves about 70%
utilisation. The baseline and token algorithms measure waiting times directly,
and consistently achieve 100% utilisation.

7 Related Work

Basten and Hoogerbrugge (B&H) [23] is the only other work that also targets
unstructured graphs with variable multiplicities and computation times. Their
algorithm sets each FIFO buffer size to be proportional to the amount of data
streaming through it. This gives a relative size for each buffer, but it is not
motivated by the underlying problems discussed in Section 2, and has poor
performance in Figure 9. We interpreted B&H to mean double buffering on the
producer side, with all the remaining memory allocated to consumer buffers,
rounding the number of buffers up to an integer. If rounding up causes the
buffer allocation to not fit, we reduced the target memory use until it did fit.
The chain8 example in Figure 1 shows the problem with this heuristic. If all data
rates are the same and there is enough memory on tn for ten buffers, Basten and
Hoogerbrugge allocates five buffers to each stream for 70% utilisation, while our
heuristic allocates eight to (t1, tn) and two to (tn−1, tn) for 100% utilisation.

The SDF tool [27] uses an exhaustive search to find all Pareto-optimal buffer
allocations for an SDF graph. It requires exponentially many steps, and only
supports constant computation times and data rates. For an n-way split or join
where each stream needs b buffers, their algorithm requires nb steps, while our
level algorithm requires O(n log

2
b) steps to find a single solution.

StreamRoller [3] performs buffer allocation as part of software pipelining,
but it is restricted to graphs with fixed multiplicities and computation times.
The algorithm is similar to the first iteration of the level algorithm, in that
the number of buffers allocated to a stream is always one plus the difference in
pipeline stage. The chain8 example in Section 2 shows that this is conservative,
even when there is no variability. Hence the StreamRoller algorithm can require
more memory than necessary; if there is insufficient memory, it fails.

Due to the unrolling factor we used, StreamRoller failed on at least one
benchmark for all of the graphs in Figure 9. This is true even for the StreamIt
benchmarks, for which our algorithm achieves 100% utilisation on at least one
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Fig. 9. Comparison of the buffer size update and cycle detection algorithms
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processor. We modified StreamRoller to use our arbitration scheme described
in Subsection 5.2, and obtained the results shown in Figure 9. Even with this
modification, however, our iterative algorithm has about 13% higher performance
for the stochastic random graphs and stochastic StreamIt benchmarks.

The SPIR compiler [4] extends StreamRoller to find a partition and software
pipeline subject to memory and latency constraints. Unlike our approach, com-
putation times and communication rates are constant. As for StreamRoller, the
number of buffers allocated to a stream is one plus the difference in pipeline
stage. Since the problem cannot be solved exactly using ILP, it is a heuristic
which uses two passes of the commercial CPLEX ILP solver. Our algorithm
could be used to improve the buffer allocation of a partition produced by SPIR.

8 Conclusions

In this paper, we presented a feedback-directed algorithm to allocate memory
for communications buffers in a statically-allocated stream program. The algo-
rithm achieves close to optimal performance, even when StreamRoller fails due
to insufficient memory. It achieves significantly higher performance and lower
latency than the previous fully general algorithm, by Basten and Hoogerbrugge.
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