
Kernel Partitioning of Streaming Applications:
A Statistical Approach to an NP-complete Problem

Petar Radojković1,2 Paul M. Carpenter1,2 Miquel Moretó1,2,4 Alex Ramirez1,2 Francisco J. Cazorla1,3

1Barcelona Supercomputing Center 2Universitat Politècnica de Catalunya - Barcelona TECH
3Spanish National Research Council (IIIA-CSIC) 4International Computer Science Institute, Berkeley

{petar.radojkovic, paul.carpenter, miquel.moreto, alex.ramirez, francisco.cazorla}@bsc.es

Abstract

One of the greatest challenges in computer architecture is how to
write efficient, portable, and correct software for multi-core proces-
sors. A promising approach is to expose more parallelism to the
compiler, through the use of domain-specific languages. The com-
piler can then perform complex transformations that the programmer
would otherwise have had to do. Many important applications related
to audio and video encoding, software radio and signal processing
have regular behavior that can be represented using a stream pro-
gramming language. When written in such a language, a portable
stream program can be automatically mapped by the stream compiler
onto multicore hardware. One of the most difficult tasks of the stream
compiler is partitioning the stream program into software threads.
The choice of partition significantly affects performance, but finding
the optimal partition is an NP-complete problem.

This paper presents a method, based on Extreme Value Theory
(EVT), that statistically estimates the performance of the optimal
partition. Knowing the optimal performance improves the evaluation
of any partitioning algorithm, and it is the most important piece of
information when deciding whether an existing algorithm should
be enhanced. We use the method to evaluate a recently-published
partitioning algorithm based on a heuristic. We further analyze how
the statistical method is affected by the choice of sampling method,
and we recommend how sampling should be done. Finally, since a
heuristic-based algorithm may not always be available, the user may
try to find a good partition by picking the best from a random sample.
We analyze whether this approach is likely to find a good partition.
To the best of our knowledge, this study is the first application of EVT
to a graph partitioning problem.

1. Introduction

Stream programming is suitable for applications that process long

sequences of data, such as voice, image, multimedia content, Internet

and communication traffic. Stream programming languages such as

StreamIt [8, 39], Brook [7] and SPM [2, 10] represent the program

as concurrent kernels, which communicate only via point-to-point

streams. A kernel is a basic computation block with a user-defined

function that processes one or more input data streams into one or

more output data streams. Dependencies between different kernels

are described explicitly through the communication data channels.

The whole application can be represented as a stream graph. The
nodes of the stream graph correspond to the kernels, while the di-

rected edges represent the communication data channels.

There are three main advantages of stream programming

languages, compared with traditional languages such as C. First, a
stream programming language is a domain-specific language, which

provides a natural way to describe streaming applications. Second,

when the program is described using a stream language, the compiler

may perform complex optimizations over the stream graph, producing

Figure 1: A kernel partition example

an efficient multithreaded program. Some optimizations involve ma-

jor changes to the program’s structure and data layout. Third, unlike

some other parallel programming models, including multithreading,

a stream program is deterministic, and therefore easier to debug.

In order to take advantage of multiple processor cores the stream

program is automatically compiled into a multithreaded executable

by the stream compiler. One of the most important tasks of the stream

compiler is to partition the kernels in the stream graph into software

threads. In Figure 1, we illustrate a stream graph of a simple program,

which is comprised of five kernels (K1 to K5). The figure also shows

one possible kernel partition of the graph: kernels K1, K2, and K3

are to be compiled to software thread Th1, while kernels K4 and K5

are to be compiled into Th2.
Kernel partitioning can significantly affect the overall system

performance. For example, for the benchmarks included in the

StreamIt 2.1.1 suite, the relative performance difference between

good and bad kernel partitions of the same benchmark mapped into

four software threads ranges from 2.4× to 3.9×, and on average it

is 3.5×.
The optimal kernel partition cannot be determined because the

essence of the analysis is graph partitioning, which is an NP-complete

problem [18, 20]. Due to the large exploration space, brute force

exploration is impractical: as streaming applications comprise tens

or hundreds of interconnected kernels (54 kernels on average in the

StreamIt 2.1.1 suite), the number of possible kernel partitions is vast.

For example, the channelvocoder benchmark has 55 kernels, and it

can be distributed into 1022 partitions of exactly four software threads.

The number of possible kernel partitions increases rapidly with the

number of output software threads, so the number of partitions using

eight threads is 1034.

Several studies (see Section 6) propose heuristic-based algorithms

to address the kernel partitioning problem. As kernel partitioning is

an intractable problem, it is impossible in general to know the perfor-

mance of the optimal partition, so the room for improvement is also

unknown. It is hard to decide whether to invest additional effort to try

to improve a given algorithm, since it may already be close to optimal.

In this paper, we present a statistical approach to the kernel parti-

tioning problem. We present a method that predicts the performance

of the optimal partition based on the observed performance of each

kernel partition in a random sample. The method is based on Extreme

Value Theory (EVT), a branch of statistics that analyzes extreme de-

2012 IEEE/ACM 45th Annual International Symposium on Microarchitecture

1072-4451/12 $26.00 © 2012 IEEE

DOI 10.1109/MICRO.2012.44

401

viation from the population median. We also present several different

approaches to generate the random samples. Finally, we show that

the performance of the best observed kernel partition in a random

sample is likely to be close to the optimal one. If a heuristic is not

available for the user’s problem, a good kernel partition can be found

using random sampling on its own.

The main contributions of our study are:

• We present a method based on EVT that statistically estimates

the performance of the optimal kernel partition. To the best of

our knowledge, this is the first study that applies EVT to a graph

partitioning problem.

• We show that the sampling method, used to generate random

partitions, has a significant effect on the applicability of the sta-

tistical method. We analyze different sampling methods, and our

results strongly recommend that the samples should be uniformly

distributed.

• We use the estimates of the optimal performance to evaluate a

state-of-the-art heuristic-based kernel partitioning algorithm.

• Finally, since a complex heuristic-based algorithm may not always

be available, the user may pick the best from a random sample, and

measure its quality using the estimates of the optimal performance.

We analyze whether random sampling is likely to find a good

kernel partition.

The presented analysis is evaluated for the benchmarks included

in the StreamIt 2.1.1 suite. The method based on EVT successfully

estimates the performance of the optimal kernel partitions for all the

benchmarks under study. In all experiments, the two different kernel

partitioning methods, the heuristics-based algorithm and the method

based on random sampling, detected kernel partitions with practically

the same performance.

The rest of the paper is organized as follows. Section 2 describes

metrics that can be used to measure the performance of streaming ap-

plications. Section 3 discusses methods to generate random samples

of kernel partitions. Section 4 presents the statistical analysis that

we use to estimate the performance of the optimal kernel partition.

In Section 5, we apply the presented analysis to the StreamIt 2.1.1

benchmark suite, and evaluate the results. Section 6 describes related

work, and Section 7 presents the conclusions of the study.

2. Background

In this section, we describe different metrics that could be of interest

when doing kernel partitioning. We also briefly describe related work

with a focus on the conclusions that directly affect our study.

2.1. Target metric

There are several metrics that can describe the performance of stream-

ing applications. In our study, we analyze the cost of streaming

applications. The cost is proportional to the time needed to process

a fixed amount of input data. This metric corresponds to execution

time for non-streaming applications. Other metrics include energy

or power, the hardware utilization of the target architecture, or some

weighted sum of them.

The input to the statistical analysis is the cost of each kernel

partition in a random sample. The costs are generated using metrics

from the StreamIt 2.1.1 compiler. Instead of using the streaming

compiler, the target metric could alternatively have been measured

using real execution or simulation.

The proposed statistical approach and the general conclusions of

this study are independent of both the target metric and the way in

which the metric is evaluated: program compilation, execution or

simulation. It is important to note, however, that the results from the

statistical analysis are clearly dependent on the quality of the samples

provided to it.

If the application behavior is sensitive to its input data, which is

generally not the case for streaming applications, the user should con-

sider the analysis for different input datasets that are representative

for different application behavior.

If the user wants to use the statistical method for multiple objective

functions separately, then it is only necessary to do a full set of

compilations, executions or simulations once. After obtaining a

complete set of metrics, the statistical analysis can be done multiple

times using different metrics.

2.2. Convexity constraint

Carpenter et al. [9] present a partitioning and allocation algorithm for

an iterative stream compiler. The algorithm produces kernel partitions

that are easier to compile and that require short pipelines of software

threads. The authors evaluate their proposal on the benchmarks

included in the StreamIt 2.1.1 suite.

One of the conclusions in that paper is that the kernel partition

should be convex. A kernel partition is convex if the dependencies

between different software threads form an acyclic graph. This means

that every directed path between two kernels in the same software

thread is internal to that thread. The reason for the convexity con-

straint is that the choice of partition affects the length of the pipeline

generated by the streaming compiler. The convexity constraint con-

trols the length of that pipeline. The authors demonstrate that without

the convexity constraint, the compiler may generate long pipelines

of software threads, which increases memory use and latency of

the inter-thread communication, significantly affecting the overall

performance.

We follow these instructions and focus our study on the analysis

of convex kernel partitions. We pay special attention to generating

random samples comprised only of kernel partitions that satisfy the

convexity constraint. It is important to notice, however, that convex-

ity is not a requirement of the proposed statistical approach. The

approach can be also used for the analysis of non-convex kernel

partitions.

Although the convexity constraint significantly reduces the num-

ber of kernel partitions, their number is still vast, and brute force

exploration is impractical. For example, the fm benchmark can be

distributed into 1012 convex kernel partitions of exactly four software

threads, radar into 1014 partitions, filterbank into 1020, and vocoder

into 1023.

3. Sampling methods
In order to apply Extreme Value Theory (EVT) to the kernel

partitioning problem for streaming applications, we need to generate

random convex partitions of the stream graph that are independent

and identically distributed (i.i.d.). Intuitively, random variables

are independent if knowing the value of one of them gives no new

information about the values of the others; they are identically

distributed if they all have the same probability distribution, which

does not have to be uniform. Uniform distribution would mean that

each kernel partition would be selected with the same probability.

The different methods we used to select the random i.i.d. kernel
partitions are described next. For each method, we describe how to

select a single random kernel partition. To generate a sample of N
i.i.d. kernel partitions, repeat the sampling method N times.

402

(a) Assigning kernel K3 (b) Assigning kernel K5

Figure 2: DFS sampling method

3.1. Depth-First Search (DFS)

The first sampling method generates a random kernel partition using

a depth-first search (DFS) of the stream graph. The kernels are

visited in sequence, each kernel being assigned with equal probability

to any software thread that would not violate the convexity constraint.

Thus, this method generates random kernel partitions in a single

traversal of the stream graph.

We illustrate the sampling method with the example shown in

Figure 2. The example stream graph contains five kernels (K1 to K5)

that are to be compiled into two software threads (Th1 and Th2). For

example, assume that kernels K1 and K2 are already assigned to Th1,

and that the next kernel to be assigned is K3 (Figure 2(a)). K3 can

be assigned with equal probability to Th1 or Th2. If K3 is assigned

to Th2, kernel K5 has to be assigned to Th2 in order to generate a

convex partition (see Figure 2(b)). Since the number of candidate

threads that do not break the convexity constraint decreases rapidly,

the DFS sampling method often generates kernel partitions with an

unbalanced number of kernels per threads.

3.2. Edge Contraction (EC)

The second sampling method generates a random partition using edge

contraction of the stream graph. Initially, each kernel is placed in its

own cluster. Then, the edges of the stream graph are visited in ran-

dom order. In each step the selected edge of the graph is contracted

by fusing the clusters connected through this edge. If the resulting

graph violates the convexity constraint, the contraction is undone.

The process is continued, by moving to the next edge in random

sequence, until the number of clusters equals the number of software

threads. Finally, the clusters are randomly assigned to the threads.

Figure 3 illustrates the EC kernel partitioning of a simple stream

graph into two software threads. For example, assume that K1→K2

edge is selected as the first edge to be contracted. In this case, kernels

K1 and K2 are fused into a single cluster while the rest of the graph

is not modified. Afterwards, we illustrate the contraction of edges

K3→K5 and (K1&K2)→K4. Finally, the clusters are randomly

distributed among software threads. In comparison with DFS, the EC

sampling method generates random kernel partitions with a balanced

number of kernels.

3.3. Edge Contraction with Filter (EC-F)

The third sampling method is an enhancement of the EC method, de-

signed to bias the sampling towards kernel partitions with a low cost,

which will lead to good application performance. The EC-F method

selects the edges of the stream graph in random order, fuses the

corresponding clusters, and checks whether the convexity constraint

is violated, as for the EC sampling method. The only difference is

that EC-F performs an additional check: if contracting the current

edge generates a cluster with a high cost (i.e. that exceeds a given

Figure 3: EC sampling method: Contracting K1→K2, K3→K5, and
(K1&K2)→K4 edges, respectively.

Figure 4: UD sampling method: Example partition graph for a small
stream program

threshold), the contraction is undone and the process is repeated

for a different edge. In the experiments presented in the paper, the

threshold was the lowest cost detected in ten random kernel partitions

generated using the EC sampling method.

It may happen that, although the number of clusters is still greater

than the number of threads, none of the edges can be contracted

without creating a cluster of cost exceeding the threshold. In this case,

the remaining edges are visited in a new random order, and edges are

contracted without checking whether the cost of the final clusters is

over the threshold. Finally, the clusters are then randomly assigned

to threads. In contrast with other presented sampling methods, this

method does take into account the cost of each particular kernel when

generating partitions. The main target of this algorithm is to generate

random partitions with a balanced cost among clusters.

3.4. Uniformly Distributed (UD) sampling

The final sampling method generates a uniform sampling distribution

of the kernel partitions. This means that each convex kernel partition

is selected with the same probability. It is important to notice that

the statistical method used in the study does not require the kernel

partitions to be uniformly distributed, since it only requires their

costs to be independent and identically distributed (i.i.d.). In general,

previous sampling methods do not provide uniformly distributed

kernel partitions.

This sampling method comprises three steps.

Step 1: We analyze different kernel partitions using the partition
graph, the graph of all possible convex partitions of the stream graph

under study. Each node of the partition graph is a different kernel

partition, so the number of nodes is equal to the number of partitions.

There is an undirected edge between two nodes of the partition graph

if they differ in the assignment of exactly one kernel partition. Also,

each node contains a self-loop edge, an edge that connects the node

to itself. Due to its large size (this is an NP-complete problem),

the partition graph is never actually constructed in its entirety. An

example partition graph, for a small stream program that is to be

assigned to two software threads, is shown in Figure 4.

Step 2: We perform a random walk on the partition graph. First,

we have to choose an initial node of the partition graph to start the

403

random walk. This node can be selected by any method that generates

random kernel partitions. In the experiments presented in our study,

the initial kernel partition (initial node of the partition graph) is

selected using the EC sampling method. The random walk starts from

the initial node in the partition graph and calculates all its neighbors.

Then it randomly chooses one of the neighbors (using a uniform

distribution) to be the next node that is to be visited. The neighbor

selection is repeated N times, with N large enough to potentially

visit all the nodes of the partition graph of the benchmarks used in

the study1. The last node of the partition graph that is visited is the

outcome of the random walk. The probability that a given node is

selected using the random walk is directly proportional to its degree

(the number of its neighbors in the graph) [32]. As we know the

probability of each visited node of the partition graph to be selected,

the random walk generates samples with a known distribution.

Step 3: In the final step of this sampling method, we convert the

output of the random walk from a known distribution to a uniform

distribution. In order to do so, each kernel partition selected using the

random walk is included in the outcome of this sampling method with

a probability that is inversely proportional to its degree in the partition

graph. This way, every convex partition has the same probability

of being selected, i.e. the method provides uniformly distributed

samples.

3.5. Statistical i.i.d. tests

The sampling methods described in the previous section are designed

to generate random i.i.d. samples. After generating the samples, we

perform statistical tests to confirm that they are indeed independent

and identically distributed.

Wald–Wolfowitz test: The Wald–Wolfowitz test or runs test ex-
amines whether the observations in the sample are mutually indepen-

dent [6, 16]. The test comprises two main steps. First, the costs of

kernel partitions (non-negative real numbers) have to be converted

into binary values. We converted the cost of a given kernel partition

to ‘0’ if its value was below the median cost in the sample, and con-

verted it to ‘1’ otherwise. This way, the sequence of non-negative real
numbers was converted into a sequence of 0s and 1s, e.g. 000110000.
In the second step, the test analyzes the sub-sequences of consecutive

identical values (0s or 1s), which are referred to as runs. For example,

the sequence 000110000 is composed of three runs: 000, 11, and
0000. The Wald–Wolfowitz test validates that the observations in the

sample under study are mutually independent if the lengths of the

runs follow a Gaussian distribution [6]. The mutual independence

hypothesis was tested at the 0.05 significance level. All the samples

used in the study passed the test.

Kolmogorov–Smirnov test: In order to validate that selected

kernel partitions in a given sample are identically distributed, we used

a two-sample Kolmogorov–Smirnov test [16, 19]. The test compares

the empirical cumulative distribution functions (ECDF) of two data

sets and, based on the maximum distance between the two ECDFs, it

confirms or rejects the hypothesis that the data sets correspond to the

same distribution. The identically distributed test that we performed

contains three steps. First, we generated a random sample of 20,000

kernel partitions and observed the cost of each partition. The costs of

the kernel partitions in the sample followed the order in which the

partitions were generated. Second, in each experiment, we observed

two randomly-selected segments of m consecutive values from the

1In our experiments, N = 100.

(a) Estimation of the population maximum

(b) Estimation of the population minimum

Figure 5: Exceedances over the threshold

original sample. Finally, we used a two-sample Kolmogorov–Smirnov
test to check whether the randomly selected segments of the sample

have the same probability distribution. If the kernel partition costs are

indeed identically distributed, then all segments of consecutive values

in the sample have the same distribution. For each sample used the

study, we performed the test for segments of m =100, 500, 1,000 and

5,000 observations. All the samples used in the study passed the test

at the 0.05 significance level.

4. A statistical approach to kernel partitioning of stream-
ing applications

We estimate the minimal cost of kernel partitions (that lead to optimal

performance) using Extreme Value Theory (EVT). EVT is a branch

of statistics that studies extreme deviations from the median [5, 12].

One of the approaches in EVT is the Peak Over Threshold (POT)

method. In its original form, the POT method takes into account

only the distribution of the observations that exceed a given (high)

threshold to estimate the population maximum [4, 35]. For example,

in Figure 5(a), the observations x1, x4, x5, and x7 exceed the threshold
and constitute extreme values, which can be used by POT analysis.

The POT method can also be used to estimate the population

minimum [21, 28]. Estimation of the minimum requires the following

five steps explained in detail in the next section:

• Obtain i.i.d. observations xi of the cost of kernel partitions.

• Invert the sign of the observations: x′i =−xi.

• Determine the threshold u, shown in Figure 5(b).
• Use the values x′i over the threshold u to estimate the maximum

cost of the inverse population (Max(CostInv)).
• The minimum cost of the original population (Min(Cost)) cor-

responds to the negative value of the maximum of the inverse

population: Min(Cost) =−Max(CostInv);

The POT method can also be explained using cumulative distri-

bution functions (CDF). For example, assume that F is the CDF

of a random variable X . The POT method can be used to estimate

the cumulative distribution function Fu of values of x above a cer-

tain threshold u. The function Fu is called the conditional excess
distribution function and it is defined as

Fu(y) = P(X−u≤ y | X > u), 0≤ y≤ xF −u,

404

Figure 6: Cumulative distribution function F(x) and matching condi-
tional excess distribution function Fu(y)

where X is the observed random variable, u is the given threshold,

y = x−u are the exceedances over the threshold, and xF ≤ ∞ is the

right endpoint of the cumulative distribution function F . Figure 6
shows a CDF of a random variable X (upper chart) and the cor-

responding conditional excess distribution function Fu(y) (bottom
chart).

The POT method is based on the following theorem [4, 35]:

Theorem 1 For a large class of underlying distribution functions F,
the conditional excess distribution function Fu(y), for large threshold
u, is well approximated by Fu(y)≈ Gξ ,σ (y) where

Gξ ,σ (y) =

{
1− (1+ ξ

σ y)−1/ξ for ξ �= 0

1− e−y/σ for ξ = 0

for y ∈ [0,(xF −u)] if ξ ≥ 0 and y ∈ [0,−σ
ξ] if ξ < 0, where Gξ ,σ

is called Generalized Pareto Distribution (GPD).

This means that for numerous distributions that present real-life

problems, Fu can be approximated with a GPD. For each particular

problem, the decision of whether GPD can be used to model the

problem or not, is based on how well the sample of observations can

be fitted to GPD. We describe the goodness of fit of observations

to GPD in Steps 3 and 4 of Section 4.1. GPD is defined with two

parameters: shape parameter ξ and scaling parameter σ . One of

the characteristics of GPD is that for ξ < 0 the upper bound of the

observed value equals u− σ
ξ , where σ and ξ are the GPD parameters

and u is the selected threshold [21, 28].

In Theorem 1, the definition of Gξ ,σ (y) for ξ = 0 can only be

used to model problems with an infinite upper bound [21, 28]. In

this study we use the GPD to estimate the minimal cost of kernel

partitions for streaming applications. The value of this cost is always

finite, and the estimated values of the parameter ξ are always ξ̂ < 0.

Therefore, for the sake of simplicity of the presented mathematical

formulas, in the rest of the paper we do not present Gξ ,σ (y) formulas

for ξ = 0.

4.1. Application of Peak Over Threshold method

We use the POT method to estimate the minimal cost of kernel

partitions for streaming benchmarks based on the cost of a sample

of random partitions. Application of the POT method involves the

following six steps:

Step 1: Generate the sample of random kernel partitions, and

determine the cost of each partition in the sample (xi). A requisite of

(a) Ordered costs of the random kernel partitions

(b) Sample mean excess plot

Figure 7: Selection of the threshold for mpeg2-subset

the presented statistical analysis is that the selected kernel partitions

must be independent and identically distributed (i.i.d.). The proposed
methods to generate i.i.d. kernel partitions are described in Section 3.

All of them passed the described i.i.d. tests.
Step 2: Invert the sign of the values of the observed costs. Orig-

inally, the POT method was used to estimate the maximum of a

population based on a set of random i.i.d. observations. In order to
estimate the minimum cost of kernel partitions, we invert the sign

of the observed values (x′i =−xi) and estimate the maximum of the

inverse population.

Step 3: Select the threshold u. The selection of the threshold

u is an important step in POT analysis. Gilli and Këllezi [21, 28]

propose using the sample mean excess plot, a graphical tool for

threshold selection. This method first sorts all task assignments in the

sample in non-decreasing cost order: x′1 ≤ x′2 ≤ ·· · ≤ x′n. Figure 7(a)
shows the sorted cost of 20,000 uniformly distributed random kernel

partitions of mpeg2-subset benchmark (see Section 3.4).

Then, the possible threshold u takes the values from x′1 to x′n
(x′1 ≤ u ≤ x′n), and for each value we compute the sample mean

excess function en(u):

en(u) =
∑n

i=k(x
′
i−u)

n−k+1 , where k = min{ i | x′i > u}.
In this formula, the factor n− k+1 is the number of observations

that exceed the threshold. Finally, the sample mean excess plot is

defined by the points (u, en(u)) for x′1 ≤ u≤ x′n. Figure 7(b) shows
the example of the sample mean excess plot for the mpeg2-subset
benchmark.

As commented before, the estimated parameter ξ of GPD must

be negative (ξ̂ < 0) to obtain the upper bound of the Max(CostInv).
A characteristic of the GPD with parameter ξ < 0 is that it has a

linear mean excess function plot. In order to have a good fit of the

conditional distribution function Fu to GPD, the threshold should

be selected so that the observations that exceed the threshold have

a roughly linear sample mean excess plot. As an example, for

the data presented in Figure 7, the threshold should be selected

405

to be u = −17,500. The sample mean excess plot is also a good

tool to test whether GPD can be used to model a particular set of

observations. If the right portion of the mean excess plot for the

sample of measured task assignments performance is not roughly

linear, that particular problem cannot be modeled using GPD.

Another important tool that can be used to understand if a given

sample of observations can be modeled with a GPD is a quantile
plot [5, 28]. In a quantile plot, the sample quantiles x′i are plotted
against the quantiles of a target distribution F−1(qi) for i = 1, . . . ,n.
If the sample data originates from the family of distributions F , the
plot is close to a straight line.

The linear sample mean excess plot and the quantile plot are not

the only constraints that should be considered when selecting the

threshold. If the threshold is too low, the estimated parameters of

GPD may be biased to the median values of the cumulative distribu-

tion function instead of to the maximum values. In order to avoid this

bias, when selecting a threshold we have to ensure that the number

of observations that exceed the selected threshold is not higher than

5% of the task assignments in the whole sample. This is a commonly

used limit in studies that use POT analysis [21, 28, 36].

Step 4: Fit the GPD function to the observations that exceed the

threshold and estimate parameters ξ and σ . Once the threshold u is

selected, the observations over the threshold can be fitted to GPD,

and the parameters of the distribution can be estimated. For the sake

of simplicity, we assume that observations from x′k to x′n in the sorted

sample presented in Figure 7(a) exceed the threshold. We rename the

exceedances yi−k+1 = x′i−u for k≤ i≤ n and use the set of elements

{y1,y2, ...,ym} to estimate the parameters of GPD. The number of

elements in the set, m = n−k+1, is the number of exceedances over

the threshold.

Different methods can be used to estimate the parameters of GPD

from a sample of observations [11, 24, 26, 38]. In our study, we

used estimation based on the likelihood function [3]. The GPD

has parameters ξ and σ . The likelihood that a set of observations

Y = {y1,y2, ...,ym} is the outcome of a GPD with parameters ξ = ξ0
and σ = σ0 is defined to be the probability that GPD with parameters

ξ0 and σ0 has outcome Y .
We make use of the likelihood function to compute the probability

of different values of GPD parameters for a given set of observa-

tions {y1,y2, ...,ym}. As the logarithm is a monotonically increasing

function, the logarithm of a positive function achieves the maximum

value at the same point as the function itself. This means that instead

of finding the maximum of a likelihood function, we can determine

the maximum of the logarithm of the likelihood function, the log-
likelihood function. In statistics, log-likelihood is frequently used

instead of the likelihood function because it simplifies computations.

The estimation of parameters ξ and σ of Gξ ,σ (y) involves the fol-
lowing steps:

(i) Determine the corresponding probability density function as a

partial derivative of Gξ ,σ (y) with respect to y:

gξ ,σ (y) =
∂Gξ ,σ (y)

∂y = 1
σ (1+ ξ

σ y)−
1
ξ −1

(ii) Find the logarithm of gξ ,σ (y):

log (gξ ,σ (y)) =−log σ − (1ξ +1) log(1+ ξ
σ y)

(iii) Compute the log-likelihood function L(ξ ,σ |y) for the GPD as

the logarithm of the joint density of the observations {y1,y2, ...,ym}:
L(ξ ,σ |y) =

m

∑
i=1

log gξ ,σ (yi)

L(ξ ,σ |y) =−m log σ − (1ξ +1)
m

∑
i=1

log(1+
ξ
σ

yi)

We compute estimated values of parameters ξ̂ and σ̂ , to maximize
the value of the log-likelihood function L(ξ ,σ |y) for observations
{y1,y2, ...,ym}:

L(ξ̂ , σ̂ |y) =max
ξ ,σ

(L(ξ ,σ |y))

L(ξ̂ , σ̂ |y) =max(−m log σ − (
1

ξ
+1)

m

∑
i=1

log(1+
ξ
σ

yi))

In order to determine the parameters ξ̂ and σ̂ , we find the minimum

of the negative log-likelihood function, min
ξ ,σ

(−L(ξ ,σ |y)), using the
procedure fminsearch() included in Matlab R© R2007a [13]. The

values ξ̂ and σ̂ are called the point estimates of the parameters ξ and

σ , respectively.

Step 5: Estimate the maximum of the inversed costs. The maxi-

mum of the inverse cost can be determined only for ξ̂ < 0 which is

satisfied for all data sets that are presented in this paper. The point

estimate of Max(CostInv) is computed as ̂Max(CostInv) = u− σ̂/ξ̂ .
In order to indicate the confidence of the estimate, we compute

the confidence intervals of the estimated ̂Max(CostInv). The confi-
dence intervals is computed using the likelihood ratio test [3], which
consists of the following steps:

(i) Define GPD as a function of ξ and Max(CostInv):

Gξ ,Max(CostInv)(y) = 1− (1− 1
Max(CostInv)−u y)−1/ξ

(ii) Determine the corresponding probability density function:

gξ ,Max(CostInv)(y) =
∂Gξ ,Max(CostInv)(y)

∂y =

=− 1
ξ (Max(CostInv)−u) (1− 1

Max(CostInv)−u y)−
1
ξ −1

(iii) Compute the joint log-likelihood function for observations

{y1, ...,ym}:
L(ξ ,Max(CostInv)|y) =

m

∑
i=1

log gξ ,Max(CostInv)(yi)

L(ξ ,Max(CostInv)|y) =−n log(−ξ (Max(CostInv)−u))−
−(1+ 1

ξ)
n

∑
i=1

log(1− 1

Max(CostInv)−u
yi)

(iv) Find the Max(CostInv) confidence interval. We determine the

confidence interval for Max(CostInv) using the likelihood ratio test [3]
and Wilks’s theorem [14, 41, 42]. The maximum log-likelihood

function is determined as:

L(ξ̂ , ̂Max(CostInv)|y) = max
ξ ,Max(CostInv)

(L(ξ ,Max(CostInv))).

The function L(ξ̂ , ̂Max(CostInv)|y) has two parameters that are free

to vary (ξ and Max(CostInv)), hence it has two degrees of freedom

(d f1 = 2). As Max(CostInv) is our parameter of interest, the profile

log-likelihood function is defined as:

L∗(Max(CostInv)) =max
ξ

L(ξ ,Max(CostInv)).

The function L∗(Max(CostInv)) has one parameter that is free

to vary, i.e. one degree of freedom (d f2 = 1). Wilks’s theorem

applied to the problem that we are addressing claims that, for a

large number of exceedances over the threshold, the distribution of

2(L(ξ̂ , ̂Max(CostInv)−L∗(Max(CostInv))) converges to a χ2 distri-

bution with d f1−d f2 degrees of freedom. Therefore, the confidence

interval of Max(CostInv) includes all values of Max(CostInv) that
satisfy the following condition:

406

Figure 8: Max(CostInv) confidence interval

L(ξ̂ , ̂Max(CostInv))−L∗(Max(CostInv))<
1

2
χ2
(1−α),1 (1)

χ2
(1−α),1 is the (1−α)-level quantile of the χ2 distribution with

one degree of freedom (d f1− d f2 = 1). α is the confidence level

for which we compute Max(CostInv) confidence intervals. We

illustrate the computation of the Max(CostInv) confidence inter-

val in Figure 8. The figure plots L∗(Max(CostInv)) for different

values of Max(CostInv). For Max(CostInv) = ̂Max(CostInv), L∗
reaches its maximum. The confidence interval of Max(CostInv)
includes all values of Max(CostInv) that satisfy the condition

L∗(Max(CostInv))> L(ξ̂ , ̂Max(CostInv))− 1
2χ2

(1−α),1, which corre-

sponds to Equation 1. We computed the Max(CostInv) confidence
interval using an iterative method based on the fminsearch() function
included in Matlab R© R2007a.

Step 6: Estimate the minimum cost of the kernel partitions. The

minimum cost of the kernel partitions corresponds to the estimated

maximum of the inverse cost: Min(Cost) = − Max(CostInv).
Also, the lower and upper endpoints of the Min(Cost) confidence
interval correspond to the inverse upper and lower endpoints of the

Max(CostInv) confidence interval, respectively.
The code that performs the statistical i.i.d. test, generates the sam-

ple mean excess plots, infers the parameters of the GPD distribution,

and estimates the minimum cost of kernel partitions was developed

in Matlab R© R2007a.

5. Results

In this section, we use the POT method to estimate, for each of the

StreamIt 2.1.1 benchmarks, the cost of the optimal kernel partition.

We compare the four sampling methods described in Section 3. We

also evaluate the number of random kernel partitions that are required

by the presented statistical approach. Finally, we analyze whether a

good kernel partition would be found using random sampling on its

own.

Before using any heuristics-based algorithm for the concrete appli-

cation under study, the user should check whether exhaustive search

would be impractical. In general, the number of valid kernel par-

titions is vast (e.g. 1020). It is possible, however, that a particular

benchmark has a small stream graph, so that exhaustive search would

work. For example, the dct benchmark included in the StreamIt 2.1.1

suite contains only eight kernels, linked in a simple stream graph.

The number of partitions of this benchmark, onto four threads, is just

32. In this case, exhaustive search is the simplest and fastest way to

find the optimal kernel partition.

Table 1: Applicability of the POT method

Benchmark Sampling method
DFS EC EC-F UD

bitonic-sort NA � NA �
channelvocoder � NA NA �
des NA � � �
fft NA � NA �
filterbank NA NA NA �
fm � NA NA �
mpeg2-subset NA � NA �
radar � NA NA �
serpent_full NA � NA �
tde_pp NA � NA �
vocoder NA � NA �

5.1. Estimation of the minimal cost using the POT method

We apply our technique to estimate the performance of the optimal

kernel partition on four threads, for each of the benchmarks in the

StreamIt 2.1.1 suite. As discussed in the previous section, the dct
benchmark can be solved using exhaustive search, leaving eleven

benchmarks to be analyzed using the POT statistical method.

For each benchmark, we use the four sampling methods described

in Section 3 to generate random samples, and use these samples as

the input to the statistical analysis. Each sample contains 20,000

random kernel partitions. Table 1 shows whether or not the statistical

method could produce an estimate of the optimal performance. Each

row in the table corresponds to one of the benchmarks, and each

column corresponds to a different sampling method. A tick sign (�)

means that the POT method did generate an estimate. An NA (Not

Applicable) entry means that the statistical method failed to produce

any estimate.

There are two reasons why the POT method is sometimes unable to

produce an estimate. First, the lower bound of the estimated minimal

cost may diverge to minus infinity. Second, the iterative method

that determines the confidence bounds of the estimated minimal

cost (see Step 5 in Section 4.1) may not converge to a solution. In

all experiments in which the POT method was not applicable, the

sample mean excess plot and the quantile plot strongly suggested that

the POT method could not be applied to that dataset (see Step 3 in

Section 4.1).

From the results in the table, we see that the POT method using

the Depth First Search (DFS) sampling method was successfully

applied for only three out of eleven benchmarks. The results for

the Edge Contraction (EC) method are better, but still moderate: the

POT method estimated the minimum cost for seven out of eleven

benchmarks. The Edge Contraction with Filter (EC-F) method was

an attempt to improve load-balance over EC. However, the POT

analysis could now only be applied to one of the benchmarks. We

compared the costs of the random kernel partitions sampled by the

EC and EC-F methods, and confirmed that the EC-F method did

indeed select kernel partitions with lower cost. This was, however,

not sufficient to make the samples appropriate for POT analysis. In

future work, we plan to analyze this phenomenon in detail. Finally,

when the POT method was applied to the uniformly distributed

random samples (UD column of the table), a minimum cost was

generated for all eleven benchmarks under study.

From the results presented in Table 1, we conclude that the sam-

pling method is an important step in the analysis. All presented

sampling methods select i.i.d. samples and fulfill the requirements of

the POT statistical analysis. However, only the uniformly distributed

407

Figure 9: Estimated minimal cost

samples always led to an estimate of the cost of the optimal kernel

partition. Other sampling method used to address the same prob-
lem, for the same benchmarks, using the same statistical analysis
provided moderate (EC method) or low performance (DFS and EC-F

methods).

5.2. Precision of the estimation

The results that we use to analyze the precision of the estimated

values are presented in Figure 9. The X-axis of the figure lists the

benchmarks, while the Y-axis shows the estimated minimal cost, i.e.

the estimated cost of the optimal kernel partition. The results are

presented relative to the cost of the best kernel partition captured

in 80,000 random kernel partitions from all four sampling methods.

Kernel partitions were generated using four different sampling meth-

ods (DFS, EC, EC-F, and UD), and each method generated 20,000

random partitions.

Different bars of the chart correspond to the different sampling

methods used: DFS, EC, EC-F, and UD. If the POT method could

not be used to estimate the minimal cost for a given benchmark and

sampling method, the corresponding bar is not plotted. The height

of the solid bars correspond to the point estimation of the minimal

cost, while the error bars correspond to the confidence bounds for

0.95 confidence level.

High precision of the estimated minimal cost is indicated by tight

confidence bounds. The width of the confidence bounds is below

10% for all bars except one (DFS sample for the fm benchmark). For

18 out of 22 cases, the width of the confidence bounds is below 5%.

Required number of random kernel partitions: UD method is

the only sampling method that provided samples appropriate for the

POT statistical analysis for all the benchmarks under study. Therefore,

from this point on, we analyze only the samples that are generated

with this method. In order to understand the impact of the sample

size on the estimated minimal cost, we generated samples that con-

tain between 1,000 and 20,000 random kernel partitions. For each

sample, we used the POT method to estimate the minimal kernel cost.

Intuitively, we expect that the POT method provides more precise

estimation as the number of kernel partitions in the sample increases.

In general, larger samples contain more kernel partitions in the tail

that are fitted to the Generalized Pareto Distribution (GPD), and

therefore the estimated GPD parameters and the minimal cost are

more precise. Figure 10 shows the results for the channelvocoder
and serpent_full benchmarks. In each figure, X-axis lists the number

of random kernel partitions in the sample, while the Y-axis shows the

(a) channelvocoder benchmark (fastest convergence)

(b) serpent_full benchmark (slowest convergence)

Figure 10: The impact of the sample size on the estimation of the min-
imal cost (UD sampling method)

estimated minimal cost. The cross markers show the point estimation

of the minimal cost, and the error bars correspond to the confidence

bounds for the 0.95 confidence level.

For the channelvocoder benchmark, 1,000 random kernel parti-

tions are sufficient to estimate the minimal cost with a high preci-

sion (see Figure 10(a)). We detect similar results for fft, filterbank,
fm, mpeg2-subset, tde-pp, and vocoder. On the other hand, for the

serpent_full benchmark, estimation based on 1,000 random kernel

partitions has wide confidence bounds (see Figure 10(b)). Precise es-

timation of the minimal cost requires more than 8,000 random kernel

partitions. The width of the confidence bounds reduces significantly

as the sample increases from 1,000 to 8,000 kernel partitions. Further

increment in the sample size only slightly improves the precision

of the estimation. From the results shown in Figure 10(b), we also

see that, as the sample size increases, the point estimation remains

roughly the same and the confidence bounds converge to this value.

Results for the benchmarks bitonic-sort, des, and radar follow the

same trend.

Based on the presented analysis, we see that the sample size re-

quired for the precise estimation of the minimal cost significantly

depends on the benchmark under study. If a user requires a minimal

cost to be estimated with a given precision, we propose the following

iterative method. The user can generate a small sample of random

kernel partitions and estimate the minimal cost using the POT method.

As long as the estimated cost does not fulfill the user’s requirements,

the user can increase the sample size and repeat the analysis.

408

Figure 11: Comparison between the actual and the estimated ker-
nel partition costs (serpent_full benchmark, UD sampling
method)

5.3. Accuracy of the estimation

In general, the kernel partitioning problem is an intractable problem.

However, for bitonic-sort, des, fft, mpeg2-subset, serpent_full, and
tde_pp benchmarks partitioned into exactly four software threads,

brute force exploration is time consuming, but feasible. Therefore,

we were able to determine the cost of all the kernel partitions, and

to compare the actual and the estimated best kernel partition costs

for these benchmarks. The results for the serpent_full benchmark

are shown in Figure 11. We also analyze the estimation accuracy for

different numbers of uniformly distributed random kernel partitions

in the sample. The X-axis of the figure lists the size of the sample,

while the Y-axis shows the absolute value of the kernel partition cost.

The cross data markers show the point estimation of the minimal cost,

and the error bars correspond to the confidence bounds for the 0.95

confidence level. The actual best kernel partition cost is marked with

the horizontal dashed line. Finally, we also plot the minimal kernel

cost observed in each random sample (diamond data markers).

First, we observe that the estimated best kernel partition cost (with

confidence bounds included) is always lower than the minimal kernel

cost detected in the corresponding random sample. Intuitively, this is

because the statistical method estimates that the best kernel partition

cost in the population (out of all possible partitions) is not higher

than the minimal cost observed in the sample. We also detected that

the upper confidence bound of the estimated best kernel partition cost

asymptotically approaches the minimal kernel partition cost observed

in the sample, as the confidence level of the estimation increases.

The estimation of the best kernel partition cost is accurate if its

confidence bounds include the actual best (minimal) cost, which is

satisfied for the samples that contain from 1,000 to 5,000 random

kernel partitions in the Figure 11. For the samples that contain more

than 6,000 kernel partitions, the presented statistical method slightly

underestimates the minimal cost. This is because these samples

capture a kernel partition with the best actual cost, as we explain

in the previous paragraph. The underestimation is very low and it

decreases with the number of kernel partitions in the sample, from

0.9% (6,000 kernel partitions) to 0.3% (20,000 partitions). The results

for bitonic-sort, des, fft, mpeg2-subset, and tde_pp benchmarks follow

the same trend.

Brute force exploration of the kernel partitioning problem for

channelvocoder, filterbank, fm, radar, and vocoder benchmarks is

infeasible. Therefore, for these benchmarks, we cannot determine the

optimal kernel partition and its cost, and we cannot validate that the

Figure 12: Comparison of random sampling (UD method) and
heuristics-based algorithm

estimated values of the POT method were correct. However, from

the results presented in Figure 9, we can detect that the estimation is

incorrect if:

• The confidence bounds of different bars that correspond to the

same benchmark do not overlap. This means that the POT method

applied to different samples of the same benchmark estimated

different minimal cost.

• The ratio between the estimated minimal cost (with confidence

bounds included) and the minimal cost detected in random samples

is higher than 1. This means that we detected a kernel partition

with the cost that is lower than the estimated minimal cost.

From the results presented in Figure 9, we did not detect a single

mispredicted cost of the optimal kernel partition.

5.4. Random sampling approach to a kernel partitioning

Our previous study [36] addresses the problem of process scheduling

for modern multicore/multithreaded processors. The results presented

in the study demonstrate that a random sample of several thousand

random process schedules likely captures a schedule with a good

performance. The study analyzes the probability that a uniformly

distributed random sample of N observations contains at least one

observation from the best-performing P% of the population (e.g. the

best 1% of the population). This probability can be computed using

the following formula: Prob = 1− (
100-P
100

)N
. As P is a small positive

number, the value of the fraction 100-P
100

is always between 0 and 1.

Therefore, for large N, the factor
(
100-P
100

)N
converges to 0, and the

observed probability converges to 1. For example, the probability

that a uniformly distributed random sample of 1,000 observations

contains at least one element from the best 1% of the population

exceeds 99.99%.

In order to analyze whether random sampling can be used to select

a good kernel partition, we compare the cost provided by the fairly-

complex heuristics-based kernel partitioning algorithm proposed by

Carpenter et al. [9] with the minimal cost observed in the random sam-

ple. The sample was comprised of 20,000 kernel partitions generated

using the UD sampling method. The results are shown in Figure 12.

The X-axis of the figure lists different benchmarks, while the Y-axis

shows the possible performance improvement of the kernel partition-

ing approaches. For bitonic-sort, des, fft, mpeg2-subset, serpent_full,
and tde_pp benchmarks, brute force exploration is feasible, so we

compare the kernel partition costs provided by the random sampling

and heuristics-based algorithm with the actual minimal costs. For

the remaining five benchmarks, channelvocoder, filterbank, fm, radar,

409

and vocoder, the results are plotted relative to the estimated mini-

mal costs. The minimal cost is estimated using the POT method on

20,000 uniformly distributed random kernel partitions. The markers

correspond to the point estimation of the minimal cost, while the

error bars correspond to the estimated confidence bounds for a 0.95

confidence level.

For bitonic-sort, des, fft, mpeg2-subset, serpent_full, and tde_pp
benchmarks, the best costs observed by the random sampling and

the heuristics-based algorithm match the actual best costs of kernel

partitions. For the channelvocoder, filterbank, fm, radar, and vocoder
benchmarks, random sampling and heuristics-based algorithm, detect

kernel partitions with a cost that is close to the estimated optimal

one. For four out of five benchmarks (all except radar), the possible
improvement of both approaches is below 3% (confidence bounds in-

cluded). For radar benchmark, the estimated improvement ranges up

to 4% and 4.2% for random sampling and heuristics-based algorithm,

respectively. If we consider the point estimation, the estimated perfor-

mance improvement is below 2% for all the benchmarks, and below

1% for four out of five benchmarks. For channelvocoder, fm, and
vocoder benchmarks, the performance of the best kernel partitions

in the random sample match the performance of the heuristics-based

algorithm. For filterbank and radar benchmarks, the heuristics-based

algorithm selected kernel partitions with 0.6% and 0.2% lower cost,

respectively, which is a negligible difference. If a good heuristics-

based approach is available for the applications, hardware, and metric

under study, the user can choose whether to use the heuristics or

the random sampling. However, it is common that heuristics-based

approaches are not directly applicable to the exact situation under

study. It is often difficult and time-consuming to adapt a heuristic to

a particular target scenario. On the other hand, the random sampling

approach is simple and easy to apply.

Required number of random kernel partitions: The formula

Prob = 1− (
100-P
100

)N
can be used to compute the probability that an

uniformly distributed random sample of N observations captures at

least one out of P% of the kernel partitions with the lowest cost.

However, as we do not know the difference in the cost in the best P%
of all kernel partitions, the formula cannot be used to compute the

difference between the minimal cost captured in a random sample

and the actual optimal cost.

In order to analyze whether a sample of N randomly selected ker-

nel partitions captures a good partition, we observe the minimal cost

detected in the random sample and compare it with the minimal cost

determined by the statistical estimation or brute force exploration,

when feasible. The random samples are generated with the UD sam-

pling method. Figure 13 shows the results of the experiments for

serpent_full benchmark. We repeat the experiment for different sam-

ple sizes that are listed along the X-axis of the figure. Dashed vertical

lines separate the results for tens (from 10 to 90), hundreds (from

100 to 900), and thousands (from 1,000 to 20,000) of random kernel

partitions in the sample. The Y-axis shows the relative difference

between the minimal cost captured in the random sample and the

actual minimal cost determined by brute force exploration. In order

to present statistically significant results, for each sample size, we

randomly generate the sample 100 times and report the mean (cross

marker) and the standard deviation (error bars) of the minimal cost

detected in different runs.

We see that tens of random kernel partitions in the sample are

unlikely to capture a good partition. We also detect a high standard

deviation, which means that the cost of the best-captured kernel

Figure 13: The impact of the sample size on the performance of the
random sampling (serpent_full benchmark, UD sampling
method)

partition is significantly different for different samples of the same

size. For hundreds of kernel partitions in the sample, the best captured

cost slowly converges to the estimated optimal one. The standard

deviation decreases, which means that different samples of the same

size provide similar performance. Finally, several thousand random

kernel partitions capture a cost that is very close to the optimal one.

Also, the detected standard deviation is low (1-2%).

We detect the same trend for all eleven benchmarks under study.

Therefore, we conclude that uniformly distributed random sampling

can be used to find a good kernel partition. However, we recommend

this method only when the random sample contains at least several

thousand kernel partitions.

In order to determine the sample size that captures a good kernel

partition, a user could also observe the convergence rate of the best

observed kernel partition performance in the sample as the sample

increases. For example, from the Figure 13, we could observe that

increasing the random sample over several thousand kernel partitions

insignificantly improves the observed performance, and stop the

random sampling at that point without estimation of the optimal

performance. Although this approach may provide good results, it is

not clear how it would avoid convergence to a local minimum of the

population (e.g. see the results for 60, 70, and 80 kernel partitions

in Figure 13). Also, without estimated optimal performance, we

cannot determine the quality of the delivered kernel partition, i.e. we

cannot provide the confidence bounds of the estimated performance

improvement.

5.5. Other considerations

There are several additional aspects to consider regarding the pre-

sented statistical approach.

Experimentation time: The presented approach requires thou-

sands of random kernel partitions to be generated and evaluated. The

time to generate and evaluate 1,000 uniformly distributed random

kernel partitions, for one of the StreamIt 2.1.1 benchmarks, was on

average 28 minutes, using a single core of an Intel Xeon E5649 pro-

cessor at 2.5GHz with 4GB memory. Running the POT method takes

less than a minute. The program that generates the uniformly dis-

tributed samples is not optimized and is implemented in the Python

programming language. An implementation in C would be much

faster. Also, since different kernel partitions can be generated inde-

pendently, the time to generate the sample would decrease linearly

with the number of cores. The experimentation time is acceptable

considering that the selected kernel partition will be compiled to the

executable that can be used on numerous systems based on the same

hardware during the lifetime of the system.

410

Scalability: The number of cores and the number of hardware

threads increase in each processor generation [34]. In order to

optimally use future multicore processors, kernel partitioning

algorithms will have to generate a significantly larger number of

threads. It is important, therefore, to analyze how these algorithms

scale with the number of software threads. On the other hand, at the

application level, it is reasonable to expect that the complexity of

streaming applications increases leading to more complex stream

graphs that comprise a larger number of kernels.

The statistical analysis that estimates the optimal kernel cost is

based on the values of the performance metric, so its cost is inde-

pendent of the number of threads and the complexity of the stream

graph. The cost of the sampling method that generates the uniformly

distributed random kernel partitions scales linearly with the number

of kernels in the stream graph and with the number of output software

threads. It also scales linearly with the mixing time of the partition

graph [30].

Compiler optimizations and system constraints: When the

program is described using a stream language, the compiler may per-

form complex optimizations over the stream graph; it can combine

adjacent filters, split computationally intensive filters into multiple

parts, or duplicate filters to have more parallel computation [8]. In or-

der to find the set of optimizations that provides the best performance,

it is important to determine good kernel partitions for different opti-

mization sets. In this case, the proposed kernel partitioning approach

does not change, but the random sampling and the presented statisti-

cal analysis are simply repeated for different optimization sets, i.e. for

different stream graphs of the same program. Kernel partitioning that

satisfies different system constraints, such as optimizing performance

subject to memory limits, is an interesting avenue for future work.

Evaluation on real hardware: In this paper, the presented sta-

tistical approach was evaluated based on the estimates of the kernel

partitions’ costs provided by the StreamIt compiler. The approach

was not evaluated on real hardware because of limitations in the ex-

perimental environment. The back-end of the StreamIt compiler, that

we used in the study, was not capable of generating working code for

different user-defined kernel partitions. As a part of future work, we

plan to evaluate the presented statistical approach on real hardware.

In order to do so, we intend to modify the StreamIt compiler, so it can

generate the executables that correspond to any given kernel partition.

6. Related work
Several projects and studies propose different tools for compiling of

streaming-like applications and their mapping onto multicore archi-

tectures.

StreamIt is a project with publicly available compiler and bench-

mark suite [1] . The StreamIt source language imposes a structure

on the stream program graph to the compiler. The StreamIt compiler

performs fully automated load balancing, communication scheduling,

routing, and a set of cache optimizations [22, 23, 37]. The StreamIt

compiler targets the Raw Microprocessor [40], symmetric multicore

architectures, and clusters of workstations.

The Stream Graph Modulo Scheduling (SGMS) algorithm is part

of StreamRoller [29], a StreamIt compiler for the Cell Architecture.

This algorithm splits stateless kernels, partitions the graph, and stati-

cally schedules the software threads onto the Cell architecture. The

splitting and partitioning problem is translated into an integer linear

programming problem, which is solved using CPLEX Optimization

Studio [27], an software package for mathematical programming.

Gedae Graph Language [33] is a proprietary GUI tool that supports

the hierarchical development of data flow graphs. Gedae allows the

user to specify different graph partitions and automatically maintains

the data flow and connectivity of the graph. However, all the graph

partition is done under user control, not by the compiler.

The Ptolemy II software environment [17] is designed to model

heterogeneous embedded computing systems. Ptolemy views com-

puting systems as a set of basic processing blocks (actors) that are
connected using explicitly-defined communication channels. This

view is very similar to the state-of-the-art interpretation of streaming-

like applications. Related work from the Ptolemy project explores

the more theoretical aspects of partitioning and scheduling data flow

graphs for multiprocessors [25].

Liao et al. [31] present a parallel compiler for the Brook streaming

language [7] with aggressive data and computation transformations.

The compiler models each streaming kernel as an implicit loop nest

over stream elements and uses affine partitioning to map regular

programs onto multicore processors.

Farhad et al. [18] show that state-of-the-art linear programming

approaches are impractical for transformations of large stream graphs

to be executed on a large number of processor cores. The authors also

propose an approximation algorithm for deploying stream graphs on

multicore processors.

Our study shows a different approach to the kernel partitioning

problem. Instead of using complex heuristics-based algorithms, we

address the problem using random sampling and statistical inference.

We present a statistical method that estimates performance of the

optimal kernel partition based on measured performance of a sample

of random partitions. We also demonstrate that random sampling

can be used to find a kernel partition with performance close to the

optimal one.

In our previous study [36], we use random sampling and statisti-

cal inference to analyze the optimal assignment of existing software

threads onto different processor cores. There are two main contribu-

tions of this article, beyond our previous work: (1) In this article, we

apply EVT to a different domain. Kernel partitioning and thread as-

signment are fundamentally different problems. In its essence, kernel

partitioning is a graph partitioning problem, and the thread assign-

ment problem addressed in our previous study is a multiprocessor

scheduling problem [20]. (2) In this article, we also show that the sam-

pling method has a significant effect on the applicability of the statis-

tical method. We analyze different sampling methods, and our results

strongly recommend that the samples should be uniformly distributed.

7. Conclusions
One of the greatest difficulties in using modern computing systems

is how to write efficient, portable, correct software for multicore

processors. A promising approach is to expose more parallelism to

the compiler through domain-specific languages, enabling the com-

piler to perform complex high-level transformations. An important

application domain comprises stream programs. A prominent step

in compiling a stream program to multiple processors is kernel parti-

tioning, which significantly affects application performance. Finding

an optimal kernel partition is, however, an intractable problem.

In this paper, we proposed a statistical approach to the kernel

partitioning problem. We described a method that statistically

estimates, with a given confidence level, the performance of the

optimal kernel partition. Knowing the optimal performance improves

the evaluation of any kernel partitioning algorithm, and it is the

most important piece of information for the system designer when

411

deciding whether an existing algorithm should be enhanced. We

demonstrated that the sampling method is an important part of the

analysis, and that not all methods that generate i.i.d. samples provide

good results. We also showed that random sampling on its own

can be used to find a good kernel partition, and that it could be an

alternative to heuristics-based approaches.

The presented statistical method does not depend on the applica-

tion. It does not require any application profiling nor does it require

the understanding of the application stream graph. The method can

be applied to streaming applications with any number of kernels, and

it can target any number of software threads. The presented method

can analyze different metrics such as throughput, maximum hardware

utilization, and minimum energy or power consumption.

We successfully applied the presented statistical analysis to the

benchmarks included in the StreamIt 2.1.1 suite. The method pre-

cisely estimated the optimal kernel partition performance for all the

benchmarks under study. Also, in our experiments, several hundred

or several thousand random kernel partitions were enough to find a

partition with close to optimal performance. The performance of the

kernel partitions that were selected using random sampling matched

the performance provided by the complex heuristic-based approach.

Acknowledgments
This work has been supported by the Ministry of Science and Tech-

nology of Spain under the contract TIN-2007-60625, and by the

European HiPEAC-3 Network of Excellence. Also, this work has

been partially supported by the Department of Universities, Research

and Information Society (DURSI) of the Catalan Government (grant

2010-BE-00352). Petar Radojković holds the FPU grant (Programa

Nacional de Formación de Profesorado Universitario) under con-

tract AP2008-02370, of the Ministry of Education of Spain. Miquel

Moretó is supported by an MEC/Fulbright Fellowship. The authors

wish to thank to Liliana Cucu-Grosjean and Luca Santinelli from

INRIA, and Jaume Abella from Barcelona Supercomputing Center

for their technical support.

References
[1] “StreamIt project,” http://groups.csail.mit.edu/cag/streamit/.
[2] ACOTES, “IST ACOTES Project Deliverable D2.2 Report on Streaming

Programming Model and Abstract Streaming Machine Description Final
Version,” 2008.

[3] A. Azzalini, Statistical Inference Based on the Likelihood. Chapman
and Hall, 1996.

[4] A. A. Balkema and L. de Haan, “Residual life time at great age,” Annals
of Probability, vol. 2, 1974.

[5] J. Beirlant et al., Statistics of Extremes: Theory and Applications. John
Wiley and Sons, Ltd, 2004.

[6] J. V. Bradley, Distribution-Free Statistical Tests. Prentice-Hall, 1968.
[7] I. Buck, “Brook Spec v0.2,” 2003.
[8] CAG MIT, StreamIt Language Specification, Version 2.1, 2006.
[9] P. M. Carpenter, A. Ramirez, and E. Ayguade, “Mapping stream pro-

grams onto heterogeneous multiprocessor systems,” in Proceedings of
the international conference on Compilers, Architecture, and Synthesis
for Embedded Systems, 2009.

[10] P. M. Carpenter et al., “A streaming machine description and program-
ming model,” Proceedings of the International Symposium on Systems,
Architectures, Modeling and Simulation, 2007.

[11] E. Castillo and A. Hadi, “Fitting the Generalized Pareto Distribution to
data,” Journal of the American Statistical Association, vol. 92, 1997.

[12] E. Castillo, Extreme value theory in engineering. Academic Press, Inc.,
1988.

[13] S. J. Chapman, Essentials of MATLAB Programming. Cengage Learn-
ing, 2009.

[14] H. Chernoff, “On the distribution of the likelihood ratio,” Annals of
Mathematical Statistics, vol. 25, 1954.

[15] W. G. Cochran, Sampling Techniques, 3rd edition. Wiley-India, 2007.
[16] L. Cucu-Grosjean et al., “Measurement-based probabilistic timing analy-

sis for multi-path programs,” in Proceedings of the 2012 24th Euromicro
Conference on Real-Time Systems, 2012.

[17] J. Eker et al., “Taming heterogeneity–the Ptolemy approach,” Proceed-
ings of the IEEE, vol. 91, no. 1, 2003.

[18] S. M. Farhad et al., “Orchestration by approximation: mapping stream
programs onto multicore architectures,” in Proceedings of the sixteenth
international conference on Architectural Support for Programming
Languages and Operating Systems, 2011.

[19] W. Feller, An introduction to Probability Theory and Its Applications.
John Wiley & Sons, Inc., 1971.

[20] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness. W.H. Freeman and Co., 1979.

[21] M. Gilli and E. Këllezi, “An application of extreme value theory for
measuring financial risk,” Computational Economics, vol. 27, 2006.

[22] M. Gordon, W. Thies, and S. Amarasinghe, “Exploiting coarse-grained
task, data, and pipeline parallelism in stream programs,” in Twelfth
International Conference on Architectural Support for Programming
Languages and Operating Systems, 2006.

[23] M. Gordon et al., “A Stream Compiler for Communication-Exposed Ar-
chitectures,” in Tenth International Conference on Architectural Support
for Programming Languages and Operating Systems, 2002.

[24] S. Grimshaw, “Computing the maximum likelihood estimates for the
Generalized Pareto Distribution to data,” Technometrics, vol. 35, 1993.

[25] S. Ha and E. Lee, “Compile-time scheduling and assignment of data-
flow program graphs with data-dependent iteration,” IEEE Transactions
on Computers, vol. 40, no. 11, 1991.

[26] J. R. M. Hosking and J. R. Wallis, “Parameter and quantile estimation
for the generalised pareto distribution,” Technometrics, vol. 29, 1987.

[27] ILOG, “CPLEX Math Programming Engine,”
http://www.ilog.com/products/cplex/.

[28] E. Këllezi and M. Gilli, “Extreme value theory for tail-related risk
measures,” International Center for Financial Asset Management and
Engineering, FAME Research Paper Series, 2000.

[29] M. Kudlur and S. Mahlke, “Orchestrating the execution of stream pro-
grams on multicore platforms,” in Proceedings of ACM SIGPLAN Con-
ference on Programming Language Design & Impl., 2008.

[30] D. Levin, Y. Peres, and E. Wilmer, Markov chains and mixing times.
American Mathematical Society, 2009.

[31] S. Liao et al., “Data and Computation Transformations for Brook
Streaming Applications on Multiprocessors,” in Proceedings of the
International Symposium on Code Generation and Optimization, 2006.

[32] L. Lovász, “Random walks on graphs: A survey,” Combinatorics, Paul
Erdos is Eighty, vol. 2, no. 1, 1993.

[33] W. Lundgren, K. Barnes, and J. Steed, “Gedae: Auto Coding to a Virtual
Machine,” in 8th High Performance Embedded Computing Workshop,
2004.

[34] K. Olukotun and L. Hammond, “The future of microprocessors,” Queue,
vol. 3, no. 7, Sep. 2005.

[35] J. I. Pickands, “Statistical inference using extreme value order statistics,”
Annals of Statististics, vol. 3, 1975.

[36] P. Radojković et al., “Optimal task assignment in multithreaded pro-
cessors: A statistical approach,” in Proceedings of the seventeenth
international conference on Architectural Support for Programming
Languages and Operating Systems, 2012.

[37] J. Sermulins et al., “Cache aware optimization of stream programs,”
in Proceedings of the 2005 ACM SIGPLAN/SIGBED conference on
Languages, Compilers, and Tools for Embedded Systems, 2005.

[38] N. Tajvidi, “Design and implementation of statistical computations for
Generalized Pareto Distributions,” Technical Report, Chalmers Univer-
sity of Technology, 1996.

[39] W. Thies, M. Karczmarek, and S. Amarasinghe, “StreamIt: A Language
for Streaming Applications,” International Conference on Compiler
Construction, vol. 4, 2002.

[40] E. Waingold et al., “Baring It All to Software: Raw Machines,” Com-
puter, 1997.

[41] S. S. Wilks, “The large-sample distribution of the likelihood ratio for
testing composite hypotheses,” Annals of Mathematical Statistics, vol. 9,
1938.

[42] S. S. Wilks, Mathematical Statistics. Princeton University, 1943.

412

